Derivation of Frequency of Oscillation We have to find out the transfer function of RC feedback network. Feedback Circuit of RC Phase Shift Oscillator Applying KVL to various loops on the figure, we get, $$I_1 \left(R+\frac{1}{j \omega C }\right) -I_2R=V_i \text{ ....(1)}$$ $$-I_1R+I_2\left (2R+\frac {1}{j\omega C}\right)-I_3R=0\text{ ... (2)}$$ $$0-I_2R+I_3\left(2R+ \frac{1}{j\omega C}\right)=0\text{ ...(3)}$$ Replacing \(j\omega\) with \(s\) and writing equations in the matrix form, $$\begin{bmatrix}R+\frac{1}{sC} & -R & 0 \\-R & 2R+\frac{1}{sC} & -R \\0 & -R & 2R+\frac{1}{2sC} \end{bmatrix}\begin{bmatrix}I_1\\I_2\\I_3\end{bmatrix}=\begin{bmatrix}V_i\\0\\0\end{bmatrix}$$ Using Cramer's rule to find out \(I_3\), $$\text{Let, }D=\begin{bmatrix}R+\frac{1}{sC} & -R & 0 \\-R & 2R+\frac{1}{sC} & -R \\0 & -R & 2R+\frac{1}{2sC} \end{bmatrix}$$ \(|D|=\begin{vmatrix}R+\frac{1}{sC} & -R & 0 \\-R & 2R+\frac{1}{...